Sets of block structure and discrepancy estimates
نویسندگان
چکیده
منابع مشابه
Discrepancy estimates on the
In a recent paper Cristea and Tichy introduced several types of discrepancies of point sets on the s-dimensional Sierpiński carpet and proved various relations between these discrepancies. In the present paper we prove a general lower bound for those discrepancies in terms of N , the cardinality of the point set, and we give a probabilistic proof for the existence of point sets with “small” dis...
متن کاملthe underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اولFibonacci sets and symmetrization in discrepancy theory
We study the Fibonacci sets from the point of view of their quality with respect to discrepancy and numerical integration. Let {bn}n=0 be the sequence of Fibonacci numbers. The bn-point Fibonacci set Fn ⊂ [0, 1] is defined as Fn := {(μ/bn, {μbn−1/bn})} μ=1, where {x} is the fractional part of a number x ∈ R. It is known that cubature formulas based on Fibonacci set Fn give optimal rate of error...
متن کاملDiscrepancy estimates for point sets on the s-dimensional Sierpiński carpet
In a recent paper Cristea and Tichy introduced several types of discrepancies of point sets on the s-dimensional Sierpiński carpet and proved various relations between these discrepancies. In the present paper we prove a general lower bound for those discrepancies in terms of N , the cardinality of the point set, and we give a probabilistic proof for the existence of point sets with “small” dis...
متن کاملL2 discrepancy of generalized Zaremba point sets
We give an exact formula for the L2 discrepancy of a class of generalized two-dimensional Hammersley point sets in base b, namely generalized Zaremba point sets. These point sets are digitally shifted Hammersley point sets with an arbitrary number of different digital shifts in base b. The Zaremba point set introduced by White in 1975 is the special case where the b shifts are taken repeatedly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 1997
ISSN: 1246-7405
DOI: 10.5802/jtnb.206